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Abstract. The metallic phase of the two-orbital Anderson lattice is studied in the limit of infinite
spatial dimensions, where a second-order perturbation treatment is used to solve the single-site
problem. Using this approximation, in the Kondo regime, we find that the finite-temperature
properties of the conduction electrons exhibit the same behaviour as is observed in the metallic
phase of the two-channel Kondo lattice. Possible connections between these two models are
discussed.

The normal metallic state of a number of three-dimensional heavy-fermion compounds can be
quite well described by the Landau Fermi-liquid theory. At zero temperature(T ) the heavy-
fermion quasi-particles have an infinite lifetime and a large effective mass. As a consequence
of thiscoherentregime the heavy-fermion compounds present at lowT a very large electronic
specific heat coefficientγ (T ) = C(T )/T [1]. The physical properties of these materials are
related to strongly correlated electrons in 4f/5f orbitals, and the appropriate model Hamiltonian
for the description of these properties is the Anderson Hamiltonian [1].

The Fermi-liquid regime in the single-impurity Anderson model can be identified by the
behaviour of the f-electron self-energy6f (ω) at low temperatures near of the Fermi level
(εF ). The f-electron self-energy in the single-impurity Anderson model isk-independent
and respects the Fermi-liquid requirements [2]. Performing a perturbation expansion in the f-
electron Coulomb interaction(U) at lowT and nearεF , Yamada showed that Re6f (ω) ≈ −ω
and Im6f (ω) ≈ −(ω2 + (πT )2) [3]. For the lattice case and in the infinite-dimensional limit,
where6f (ω) is alsok-independent [4,5], it was shown by Georgeset al [6] that the metallic
phase of the periodic (one-orbital) Anderson model can be a Fermi liquid. The behaviours of
the real and imaginary parts of6f (ω) for d = ∞were studied by Schweitzer and Czycholl [7]
by means of a self-consistent second-order perturbation inU . In this case the imaginary part
of 6f (ω) vanishes nearεF in accordance with the Luttinger theorem, and the real part has a
negative slope in the same region.

The investigations presented above were carried out only for one-channel versions of the
Anderson Hamiltonian. The multichannel one-impurity Anderson model, where a localized
f electron hybridizes with several conduction bands (orbitals), was studied in the large-U

limit [8, 9]. In this limit the model shows non-Fermi-liquid behaviour. A non-Fermi-liquid
behaviour is also present in the multichannel Kondo-impurity problem. This problem was
introduced by Nozìeres and Blandin [10], and the exact solution was obtained by Andrei and
Destri [11] and Tsvelick and Wiegmann [12] in terms of the Betheansatz. The non-Fermi-
liquid behaviour in the multichannel Kondo-impurity model comes from the overcompensation
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of the Kondo spins by the conduction electrons [13]. The overcompensation mechanism
was also used to explain the non-Fermi-liquid behaviour in the two-channel Kondo (tCK)
lattice [14,15] and the two-channel Anderson (tCA) lattice [16] in the Kondo limit.

A conclusion regarding the non-Fermi-liquid regime in the tCK lattice was reached by
Jarrellet al [14] looking at the one-particle properties of the conduction electrons. In this case,
the real part of the self-energy of the conduction electrons6c(ω) presents a positive slope near
the Fermi energy. The imaginary part of6c(ω), instead of going to zero in a quadratic way
as in Fermi-liquid systems, goes away from zero asω, T → 0. Despite these properties, the
system is metallic and the single-particle density of states (DOS) of the conduction electrons
has a finite value at the Fermi level. This metallic regime (incoherent metal) was used to
explain the physical properties of a number of heavy-fermion compounds where the Fermi-
liquid paradigm cannot be applied [14, 18]. For example, the incoherent-metal regime has
been used to explain the unusual resistivity of UBe13 [16].

In addition, in reference [14] the tCK model was studied by means of quantum Monte
Carlo (QMC) simulation in the limit of high dimensions. It is well known that the QMC
method provides very accurate results at intermediate and high temperatures. However, it
does not provide any information about the explicit form of the self-energy of the problem.
For example, in the work of Jarrellet al [14] the single-particle self-energy was obtained by
inverting the relationGc(ω) = D(ω−6c(ω)) [17] for different temperatures. It must be noted
that the non-analytic form of6c(ω) was postulated from these numerical results. Thus, in
order to understand the origin of the incoherent-metal regime in the tCK lattice, it is important
to find a model which describes these novel properties and allows us to obtain an explicit form
for 6c(ω). Here, we address precisely this problem: the study of a multi-orbital model which
correctly takes into account the incoherent behaviour of the tCK lattice and provides an explicit
form for the self-energy of the conduction electrons of each orbital.

In this article we study a multi-orbital Anderson-lattice (mOA) model in the high-
dimension(d = ∞) limit. We discuss the formal exact solution of this multi-orbital
Hamiltonian as well as the finite-temperature properties of the two-orbital version of this
problem. In this case a second-order perturbation treatment is applied to solve the impurity
problem in the presence ofU . As we have mentioned before, we find that the conduction
electrons show the same behaviour as those obtained by Jarrellet al [14] for the tCK lattice.

The mOA model consists of the usual f-electron Hamiltonian of the periodic Anderson-
lattice model,m identical orbitals of non-interacting conduction electrons and local hybrid-
ization between f and conduction electrons. The complete Hamiltonian can be written as

H = − t∗

2
√
d

∑
〈ij〉σα

c
†
iασ cjασ +E

∑
iσ

n
f

iσ +U
∑
i

n
f

i↑n
f

i↓ +
∑
iσα

Vασ (c
†
iασ fiσ + f †

iσ ciασ ) (1)

wherec†
iασ (ciασ ) creates (destroys) a conduction electron on sitei and orbitalα = 1, 2, . . . , m

of spinσ , andf †
iσ (fiσ ) creates (destroys) a localized f electron on sitei of spinσ . The sites

i form an infinite-dimensional hypercubic lattice and the hopping is limited to the nearest
neighbours. The scaled hopping integralt∗ = 1 determines the energy unit. The hybridization
term Vασ is site independent, but it can have different values for different orbitals or spin
directions.

To obtain the formal exact solution of the mOA model it is convenient to define a new set
of conduction electron operators:{a†

i1σ , a
†
i2σ , . . . , a

†
imσ }. In this case,

a
†
i1σ ≡ (1/V̄σ )

∑
α

Vασ c
†
iασ

and the remaininga†
iασ -operators are written in such a way as to preserve the definition ofa

†
i1σ
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and the fermion commutation relations. The normalization factor is

V̄σ =
√∑

α

V 2
ασ .

In the new representation the mOA Hamiltonian (equation (1)) is written as

H = − t∗

2
√
d

∑
〈ij〉σα

a
†
iασ ajασ +E

∑
iσ

n
f

iσ +U
∑
i

n
f

i↑n
f

i↓ +
∑
iσ

V̄σ (a
†
i1σ fiσ + f †

iσ ai1σ ). (2)

It is clear from equation (2) that the multi-orbital problem for the f electrons is reduced to
a one-orbital problem with a renormalized hybridizationV̄σ . As the local approximation for
the Anderson (one-orbital) lattice is exact in the limit of infinite dimensions [5,19], the formal
exact solution for the f-electron one-particle Green’s function ford →∞ is given by [5]

G
f

kσ (iωn)
−1 = iωn −6f

σ (iωn)−
V̄ 2
σ

iωn − εk . (3)

As we intend in this work to clarify the physical origin of the incoherent properties of
the tCK model, the conduction electron Green’s function of each particular orbital must be
known. In the context of the mapped Hamiltonian (equation (2)), theα-orbital Green’s function
Gαc
ijσ (τ ) ≡ −〈T̂ ciασ (τ )c†

jασ (0)〉 is obtained when theciασ -operators are written in terms of
theaiασ -operators, and it is straightforward to show that

Gαc
iiσ (iωn) =

(
1− V

2
ασ

V̄ 2
σ

)
D(iωn) +

V 2
ασ

V̄ 2
σ

D(iωn − V̄ 2
σ Gσ ) (4)

whereGσ (iωn)−1 ≡ iωn − 6f
σ (iωn) andD(z) is the Hilbert transform of the uncorrelated

density of states of the conduction bandρ0(ε) [17]. For a hypercubic lattice ford = ∞,
ρ0(ε) = (1/√π) exp(−ε2).

The two terms of equation (4) can be easily understood from the transformation discussed
above. The first term of the right-hand side of this equation describes the contributions of
them − 1 free orbitals and the second term is related to the one-orbital Anderson problem
of equation (2). It is important to notice that the formal exact solution of the mOA model
(equations (3) and (4)) is completely general as regards the number of orbitals as well as the
values of the hybridization on different orbitals.

In principle, it is possible to assume that thescattering processesin each orbital can be
described by means of a self-energy [14,19]. By definition, theα-orbital Green’s function can
be written in terms of the self-energy of the conduction electrons6αc

kσ (iωn) as

Gαc
kσ (iωn)

−1 ≡ iωn − εk −6αc
kσ (iωn). (5)

In order to recover equation (4) by summing equation (5) over the momentum, the self-energy
of theα-orbital conduction electrons must be given by

6αc
kσ (iωn) = V 2

ασGσ (iωn)
{

1 +
(V̄ 2
σ − V 2

ασ )Gσ (iωn)
iωn − (V̄ 2

σ − V 2
ασ )Gσ (iωn)− εk

}
. (6)

The requirement that in thed →∞ limit the local interactions give rise to ak-independent
self-energy for the f electrons is satisfied for the mOA lattice (see equation (3)). However, a
k-dependent self-energy for theα-orbital conduction electrons is obtained.

The first term of6αc
kσ (iωn), V

2
ασGσ (iωn), is the self-energy of the one-orbital Anderson

lattice. This term is completely local and describes the scattering processes in theα-orbital.
The second term is relevant only for multi-orbital systems, whereV̄ 2

σ 6= V 2
ασ . As V̄ 2

σ − V 2
ασ

is related to all other orbitals different fromα, thek-dependent term can be considered as
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aneffective correctionto the one-orbital self-energy. This effective correction describes the
scattering process that occurs in the remaining orbitals.

Different methods can be used to solve the single-site problem in thed = ∞ limit [5,20].
One of these methods is that of the iterative perturbation theory (IPT) [21]. The IPT proves to
be a good approximation for describing the Fermi-liquid properties of the Hubbard model [22].
For the particular case of the periodic Anderson model, the IPT results are in good agreement
with exact-diagonalization [5] and QMC findings [23]. The IPT method is normally applied
for values ofU/t∗ < 3; however, it has the property of correctly taking into account the limit
V → 0 [5]. This allows us to study the one-particle properties of the mOA lattice near the
Kondo limit.

Let us now turn our attention to the spectral properties of the conduction electrons of
the two-orbital Anderson (tOA) model. The one-particle properties of f electrons will not
be considered here because they are well known from studies of the periodic Anderson
model [5,7,23]. In our study we have chosenU = 2.0 andV = 0.3535. Note thatV = 0.3535
for m = 2 means that̄V = 0.5.

In figure 1(a) we display the single-particle density of states (DOS) for the conduction
electrons in the tOA model. The DOS has a finite value at the Fermi level for all temperatures.
Such metallic behaviour is related to charge fluctuations and to the contribution of the
non-hybridized electrons. Thek-independent real and imaginary parts of the conduction
electron self-energy6c(ω) ≡ V 2G(ω) (see equation (6)) are plotted in figures 1(b) and 1(c),
respectively. As one can see in figure 1(b), the real part of the self-energy exhibits a positive
slope near the Fermi level and this slope decreases with increasing temperature. It is well
known that for a Fermi-liquid system the slope of Re6c(ω) must be negative. Therefore,
as was pointed out in reference [14], the positive slope observed in figure 1(b) describes the
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Figure 1. One-particle properties of the conduction electrons form = 2, V = 0.3535,U = 2.0
and three different temperatures: (a) the density of states; and the (b) real and (c) imaginary parts
of the self-energy.
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breakdown of the quasiparticle concept. Non-Fermi-liquid properties can be also observed in
the imaginary part of the self-energy (see figure 1(c)). From this figure it is clear that Im6c(ω)

does not approach the Fermi-liquid form Im6(ω) ≈ −(T 2 + ω2) asω, T → 0. Note that a
behaviour similar to that presented in figure 1 has been observed in the one-particle properties
of the conduction electrons of the tCK lattice [14].

It is worth noticing that the incoherent properties shown in figures 1(b) and 1(c) are closely
related to the definition of6c(ω). Concerning this point, we follow the idea of Jarrellet al [14]
where the self-energy is defined in such a way as to account for the Hilbert transform of the
Green’s function of the conduction electrons in each channel. It is well known that6f (ω) (see
equation (3)) shows Fermi-liquid behaviour at low temperatures near to the Fermi level [7].
From equation (6) one can easily conclude that the Fermi-liquid properties of the f electrons
imply incoherent properties for the conduction electrons of the periodic Anderson model as
well as the mOA model. Hence, to decide whether a model of two or more different particles
is in a coherent regime or not, it is important to consider the behaviour of all particles.

In figure 2 we compare the DOS for the conduction electrons of the tOA model with
those of the periodic Anderson model. In this figure we consider two different values of the
hybridization:V = 0.3535(m = 2) andV = 0.5 (m = 1), such that the correlation effects
are taken into account at the same level for both systems. This allows us to study the effect of
the non-hybridized particles in the two-orbital system. ForT = 0.20 the contribution of these
particles completely suppresses the hybridization gap, and a flat region in the DOS form = 2
is observed near the Fermi level. Despite the differences in the Hamiltonian parameters and
the methods used to solve the impurity problem, similar flat behaviours have been reported in
reference [14] for the tCK model.

0.0 0.6 1.2 1.8 2.4
ω

0.0

0.1

0.2

0.3

0.4

0.5

ρ c(ω
)

m=2
m=1

Figure 2. The DOS of the conduction electrons atT = 0.20 form = 2 (solid line) andm = 1
(dot–dashed line).

Let us now proceed to explain the similarities between our results and those from the tCK
model [14]. In the Kondo limit, the mOA model (equation (1)) is mapped onto a multi-orbital
Kondo (mOK) model. In order to prove this result, one can apply the resolvent perturbation
theory [24] in the subspace defined by theai1σ - andf -operators; see equation (2). If the
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hybridization is the same for both spin directions, the mOK Hamiltonian is written as

HKondo= − t∗

2
√
d

∑
〈ij〉σα

c
†
iασ cjασ + k

∑
iα

V 2
αSi · siα

+ k
∑
iα 6=α′

VαVα′ [S
z
i (c

†
iα↑ciα′↑ − c†

iα↓ciα′↓) + S+
i c

†
iα↓ciα′↑ + S−i c

†
iα↑ciα′↓] (7)

wherek ≡ U/(|E|(|E| + U)) [1] andSi , siα are the Kondo and theα-orbital conduction
electron spin operators, respectively. Note that equation (7) is precisely the Schrieffer–Wolf
transformation [25] of equation (1).

The first two terms on the right-hand side of equation (7) can be considered as the simplest
generalization of theone- and two-channelKondo models into a multichannel one. The
remaining terms are related to non-diagonal processes of exchange between the impurity and
the conduction electrons in the different orbitals. The relevant contributions of these non-
diagonal processes will appear only in fourth order in the hybridization term; see equation (6).
It is clear that the fourth-order contributions act only as small corrections in the Kondo limit,
(kVαVα′)

2 � 1. This explains the agreement between our results and those from the tCK
model.

Summarizing, the simplest extension of the periodic Anderson model into a multi-orbital
Anderson (mOA) model is introduced for the first time in this article. The model is studied
in the limit of high dimensions, where a second-order perturbation treatment (IPT) is used to
solve the impurity problem. Using this approximation at finite temperatures, we find that the
single-particle properties of the conduction electrons in the Kondo regime for the two-orbital
Anderson model are the same as those for the two-channel Kondo lattice. We have explained
this agreement in terms of the irrelevance of the non-diagonal exchange processes in the Kondo
limit. Finally, we wish to point out the importance of our results, since they open up a new
possibility for studying the mCK problem in the limit of high dimensions.
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de Desenvolvimento Cientı́fico e Tecnoĺogico (CNPq), the Max-Planck-Institut für Physik
Komplexer Systeme (MPIPKS) and the Funda¸cão de Amparòa Pesquisa do Estado de São
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